
COP3330 Object Oriented Programming in C/C++

COP3014 Page 1

Programming Assignment #3

Learning objective : Upon completion of this program, you should gain experience with

overloading basic operators for use with a C++ class. The code for this assignment should be

portable -- make sure you test with g++ on program.cs.fsu.edu before you submit.

Description:
Create a class called Mixed. Objects of type Mixed will store and manage rational numbers in a

mixed number format (integer part and a fraction part). The class, along with the required

operator overloads, should be written in the files "mixed.h" and "mixed.cpp".

Programming Specifications:

1. Your class must allow for storage of rational numbers in a mixed number format. Remember
that a mixed number consists of an integer part and a fraction part (like 3 1/2 -- "three and one-
half"). The Mixed class must allow for both positive and negative mixed number values. A zero
in the denominator of the fraction part constitutes an illegal number and should not be allowed.
You should create appropriate member data in your class. All member data must be private.

2. There should be two constructors. One constructor should take in three parameters,
representing the integer part, the numerator, and the denominator (in that order), used to
initialize the object. If the mixed number is to be a negative number, the negative should be
passed on the first non-zero parameter, but on no others. If the data passed in is invalid
(negatives not fitting the rule, or 0 denominator), then simply set the object to represent the
value 0. Examples of declarations of objects:

3. Mixed m1(3, 4, 5); // sets object to 3 4/5
4. Mixed m2(-4, 1, 2); // sets object to -4 1/2
5. Mixed m3(0, -3, 5); // sets object to -3/5 (integer part is 0).
6. Mixed m4(-1, -2, 4); // bad parameter combination. Set object to 0.

The other constructor should expect a single int parameter with a default value of 0 (so

that it also acts as a default constructor). This constructor allows an integer to be passed

in and represented as a Mixed object. This means that there is no fractional part. Example

declarations:

 Mixed m5(4); // sets object to 4 (i.e. 4 and no fractional part).

 Mixed m6; // sets object to 0 (default)

Note that this last constructor will act as a "conversion constructor", allowing automatictype

conversions from type int to type Mixed.

7. The Mixed class should have public member functions Evaluate(), ToFraction(), and
Simplify(). The Evaluate() function should return a double, the others don't return

COP3330 Object Oriented Programming in C/C++

COP3014 Page 2

anything. These functions have no parameters. The names must match the ones here exactly.
They should do the following:

o The Evaluate function should return the decimal equivalent of the mixed number.
o The Simplify function should simplify the mixed number representation to lowest terms.

This means that the fraction part should be reduced to lowest terms, and the fraction
part should not be an improper fraction (i.e. disregarding any negative signs, the
numerator is smaller than the denominator).

o The ToFraction function should convert the mixed number into fraction form. (This
means that the integer part is zero, and the fraction portion may be an improper
fraction).

8. Create an overload of the extraction operator >> for reading mixed numbers from an input
stream. The input format for a Mixed number object will be:

9. integer numerator/denominator

i.e. the integer part, a space, and the fraction part (in numerator/denominator form),

where the integer, numerator, and denominator parts are all of type int. You may

assume that this will always be the format that is entered (i.e. your function does not have

to handle entry of incorrect types that would violate this format). However, this function

should check the values that come in. In the case of an incorrect entry, just set the Mixed

object to represent the number 0, as a default. An incorrect entry occurs if a denominator

value of 0 is entered, or if an improper placement of a negative sign is used. Valid entry

of a negative number should follow this rule -- if the integer part is non-zero, the negative

sign is entered on the integer part; if the integer part is 0, the negative sign is entered on

the numerator part (and therefore the negative sign should never be in the denominator).

Examples:

 Valid inputs: 2 7/3 , -5 2/7 , 4 0/7 , 0 2/5 , 0 -8/3

 Invalid inputs: 2 4/0 , -2 -4/5 , 3 -6/3 , 0 2/-3

10. Create an overload of the insertion operator << for output of Mixed numbers. This should
output the mixed number in the same format as above, with the following exceptions: If the
object represents a 0, then just display a 0. Otherwise: If the integer part is 0, do not display it. If
the fraction part equals 0, do not display it. For negative numbers, the minus sign is always
displayed to the left.

11. Examples: 0 , 2 , -5 , 3/4 , -6/7 , -2 4/5 , 7 2/3

12. Create overloads for all 6 of the comparison operators (< , > , <= , >= , == , !=).
Each of these operations should test two objects of type Mixed and return an indication of true
or false. You are testing the Mixed numbers for order and/or equality based on the usual
meaning of order and equality for numbers. (These functions should not do comparisons by
converting the Mixed numbers to decimals -- this could produce round-off errors and may not
be completely accurate).

13. Create operator overloads for the 4 standard arithmetic operations (+ , - , * , /) , to
perform addition, subtraction, multiplication, and division of two mixed numbers. Each of these
operators will perform its task on two Mixed objects as operands and will return a Mixed object
as a result - using the usual meaning of arithmetic operations on rational numbers. Also, each of
these operators should return their result in simplified form. (e.g. return 3 2/3 instead of 3
10/15, for example).

COP3330 Object Oriented Programming in C/C++

COP3014 Page 3

o In the division operator, if the second operand is 0, this would yield an invalid result.
Since we have to return something from the operator, return 0 as a default (even
though there is no valid answer in this case). Example:

o Mixed m(1, 2, 3); // value is 1 2/3

o Mixed z; // value is 0

o Mixed r = m / z; // r is 0 (even though this is not good

math)

14. Create overloads for the increment and decrement operators (++ and --). You need to handle
both the pre- and post- forms (pre-increment, post-increment, pre-decrement, post-
decrement). These operators should have their usual meaning -- increment will add 1 to the
Mixed value, decrement will subtract 1. Example:

15. Mixed m1(1, 2, 3); // 1 2/3

16. Mixed m2(2, 1, 2); // 2 1/2

17. cout << m1++; // prints 1 2/3, m1 is now 2 2/3

18. cout << ++m1; // prints 3 2/3, m1 is now 3 2/3

19. cout << m2--; // prints 2 1/2, m2 is now 1 1/2

20. cout << --m2; // prints 1/2 , m2 is now 0 1/2

21. General Requirements
o As usual, no global variables
o All member data of the Mixed class must be private
o Use the const qualifier whenever appropriate
o The only library that may be used in the class files is iostream
o Since the only output involved with your class will be in the << overload (and commands

to invoke it will come from some main program or other module), your output should
match mine exactly when running test programs.

Sample main program

 I will post a sample main routine and corresponding output on the Blackboard site.

Submit the following files through the Assignment Blackboard portal:

 mixed.h

 mixed.cpp

Grading Criteria:
 The program compiles. If the program does not compile no further grading can be

accomplished. Programs that do not compile will receive a zero.

 (25 Points) The program executes without exception and produces output. The grading of the

output cannot be accomplished unless the program executes.

 (25 Points) The program produces the correct output.

 (25 Points) The program specifications are followed.

COP3330 Object Oriented Programming in C/C++

COP3014 Page 4

 (10 Points)The program is documented (commented) properly.

 (5 Points)Use constants when values are not to be changed

 (5 Points)Use proper indentation

 (5 Points)Use good naming standards

